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Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems
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A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev.
A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein
condensate. A class of driven systems without a link with the Harper-model context is shown to have an
intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the
known Hofstadter’s butterfly. In addition, the level crossings between Floquet states of the same parity and
between Floquet states of different parities are studied and highlighted. The results are relevant to studies of
fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field

descriptions of Bose-Einstein condensates.
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I. INTRODUCTION

Hofstadter’s butterfly spectrum of the Harper model [1],
first discovered in two-dimensional electron systems subject
to a square lattice potential and a perpendicular magnetic
field, has attracted tremendous mathematical, theoretical, and
experimental interests. For an arbitrary irrational value of
one system parameter, the spectrum of the Harper model is a
fractal, which has been rigorously proved after decades of
research on the “Ten Martini problem” [2]. As one important
property of Hofstadter’s butterfly spectrum, the number of its
subbands depends on the arithmetic property of the flux of
the magnetic field. As the magnetic flux changes smoothly
and thus varies between irrational or rational numbers, the
gap between the subbands shows fractal properties and will
close itself infinitely times [3]. This implies that Hofstadter’s
butterfly spectrum contains infinite quantum phase transition
points [4].

Early quantum chaos studies established that the Floquet
(quasienergy) spectrum of periodically driven systems may
display a fractal butterfly pattern as well [5-7]. However, the
nature of the fractal Floquet spectrum is still poorly under-
stood for three reasons. First, because the eigenphase of Flo-
quet states is restricted to a range of 2, understanding a
Floquet spectrum associated with an infinite-dimensional
Hilbert space is subtle and challenging [8]. Second, a rigor-
ous mathematical proof about the fractal nature of a butterfly
Floquet spectrum is still lacking. Third, previous findings
regarding to fractal Floquet spectrum were largely limited to
the so-called kicked-Harper model (a driven version of the
Harper model) [5,9—12] and its variants [6,7,11-13].

Because of great interests in studies of quantum control,
especially in studies of dressed matter waves [14—-19], there
are now promising possibilities for the engineering and
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simulation of driven ultracold systems with a prescribed Flo-
quet spectrum. Reference [6] represents a recent attempt in
this direction. In particular, in Ref. [6] we showed that by
designing two S-kicking sequences, the Floquet spectrum of
a double-kicked-rotor system can be made to be a Hofs-
tadter’s butterfly, and the spectrum is identical with that of a
kicked-Harper model when a certain parameter takes an ar-
bitrary irrational value [13].

In this paper, we reveal yet another class of butterfly Flo-
quet spectrum using driven SU(2) systems, which are realiz-
able by, for example, a driven two-mode Bose-Einstein con-
densate (BEC). As seen below, the basic strategy is
essentially an extension of our previous work [6], thus sug-
gesting the possibility of synthesizing butterfly spectrum in
many other systems that go well beyond the context of two-
dimensional electron systems or the Harper-model context.

Our findings about the butterfly spectrum of driven SU(2)
systems are both motivating and fascinating. First of all, as
explained below, now all the three popular paradigms of
quantum chaos, i.e., the kicked-rotor model, the kicked-
Harper model, and the kicked-top model, are linked together,
insofar as any one of them can be used to generate quantum
critical systems with fractal statistics [1,20]. Second, the but-
terfly spectrum obtained in driven SU(2) systems is signifi-
cantly different from Hofstadter’s butterfly, with remarkable
aspects. For example, we show that with one certain system
parameter fixed the overall butterfly pattern is insensitive to
the number of bosons (denoted N) in the BEC, but some
detailed features depend on whether N is odd or even. This
may serve as a useful guide for seeking dramatic coherence
effects in a BEC. Another interesting aspect is that the but-
terfly spectrum contains many level crossings between states
of different parities and thus many points of coherent de-
struction of tunneling (CDT) [15,21], with the total number
of CDT points found to scale as ~N*°. As an analog of
quantum phase transitions in driven systems, the found but-
terfly pattern also contains many level crossings between
same-parity eigenstates. Due to these distinctive properties,
the butterfly spectrum reported here may become a test bed
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for a number of research topics. To emphasize the remark-
able differences between the butterfly spectrum found here
and that associated with Harper’s model, we refer to the
newly found spectrum as “butterfly spectrum” instead of
“Hofstadter’s butterfly spectrum.”

The main results of this study have been briefly reported
in Ref. [22] and this paper represents a full-length descrip-
tion of our findings. In Sec. II we will introduce the model
SU(2) system and explain the main idea behind our study. In
Sec. III we study the peculiar multifractal spectral properties
of the butterfly spectrum and the associated level crossings.
The relevance of the underlying classical limit is also dis-
cussed in detail. To motivate possible experiments, we dis-
cuss some related issues in Sec. IV. We conclude this study
in Sec. V. Appendixes A—C present some further details that
may be of interest to some readers.

II. DRIVEN SU(2) MODEL

Our driven SU(2) model was motivated by a driven two-
mode BEC system, proposed earlier [16,23,24] to realize the
well-known kicked-top model [25] in the quantum chaos lit-
erature. In a very general form, a driven two-mode Bose-
Hubbard model can be written as

H=f(h(aja, + aya) + gh(aja; —ajar)’, (1)

where a; and a;" are the bosonic annihilation and creation
operators for the ith mode, f(¢) describes the time-dependent
tunneling rate between the two modes, and the g(z) term
describes the self-interaction between same-site bosons,
whose time dependence can be achieved by Feshbach reso-
nance induced by an additional magnetic field. Note that the
total number of bosons N=aa,+aja, is a conserved quan-
tity. For a fixed N, the dimension of the Hilbert space is N
+1. Using the Schwinger representation of angular-
momentum operators, namely, J,=(a|a,+aja,)/2, Jy=(a§a1
—aiaz)/(Zi), and JZ:(aIal —agaz)/Z, Eq. (1) reduces to

H=2f()hJ, +dg(t)hJ2. ()

This above Hamiltonian makes it clear that its dynamics is
solely determined by the SU(2) generators J,, J,, and J,. The
total angular-momentum quantum number J is given by J
=N/2. The Hilbert space can be spanned by the eigenstates
of J., denoted |m), with J_|m)=m|m). The population differ-
ence between the two modes is given by the expectation
value of 2J,. It is also important to note that if we exchange
the indices of the two modes, then J, is invariant, J,——J_,
and as a result the Hamiltonian in Eq. (2) is unchanged. This
reflects a parity symmetry of our model, which will be ex-
ploited below.

Consider then two specific forms of f(z) and g(¢). In the
first case f(1)=a/(27), g(t)=go=,[8(t-2nT—7)— 8(t-2n7)].
The Floquet operator, i.e., the unitary evolution operator F
from 2n7+0" to (2n+2)7+0", is then given by

.2 . .2 .
F= el”Jz/(zj)e_lajxe_l”Jz/(zj)e_lajx, (3)

where n=4gyN. Interestingly, the first two or the last two
factors in Eq. (3) constitute the Floquet operator for a stan-
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dard kicked-top model [25]. As such our driven system here
can be regarded as a “double-kicked-top model.” Alterna-
tively, if we set g(1)=go/ &, f(1)=52,[8(t—n7)+ 8t-nT-§)],
where ¢ is the time delay between the two delta kicking
sequences, then the associated propagator F’ from n7—0* to
(n+1)7=0" is given by

. 2 . 2 . .2 .
F' = e—l(4g07’/§)]zelﬂjz/(zj)e—lajxe—l nJZ/(ZJ)e—taJX' (4)

Under the special condition 4g,7/ é=2km(8k) for integer J

(half-integer J), where k is an integer, the factor e~'*80797; jg
unity in the (2J+ 1)-dimensional Hilbert space and hence F’
becomes identical with F. Based on this, one now has two
different scenarios for realizing F, the key operator to be
analyzed in this paper.

To explain our motivation of considering the operator F,
let us consider the |m) representation. In that representation
the third factor %2/ of F equals e/’ which is a
pseudorandom number for irrational 7/J. Interestingly, the
first factor of F' however effectively induces a time reversal
of the third factor and thus partially cancels this pseudoran-
dom phase. Indeed, using the SU(2) algebra [26], the product
of the first three factors of F in Eq. (3) is given by

. i ing*
e W) pmiadiqmin 1)) = expl — ja{(J,/2 + iJ,/2)
Xel'[ﬂ(zjz*'l)/(zj)] + C.C.}] . (5)

This shows that the 7-dependent term entering into F be-
comes eL7/+1/@)] which is always a quasiperiodic number
el /D] i the |m) representation. According to our
early work [27], such a partial cancellation of quasirandom
dynamical phases implies intriguing spectral properties.

For later discussion we also study the classical limit of F.
To that end we consider scaled variables x=J,/J, y=Jy/J,
and z=J,/J. Evidently, the three operators x, y, and z also
satisfy the angular-momentum algebra, but with an effective
Planck constant #.=1/J. Taking the fiiz— 0 limit with
fixed 7 and «, the classical dynamics associated with F can
be obtained, with variables x, y, and z restricted on a unit
sphere. Because 7=4g,N, this classical limit with fixed #
requires N—+% and go— 0. This condition is apparently
equivalent to that appearing in a standard mean-field limit of
the driven BEC.

In addition to the system defined by F, we also consider
one of its interesting variants,

.2 . ) .
ny — €l17j3/(2])€_laJXe_l77]3/(2])6_1&].‘" (6)

which is different from F in the last factor, i.e., e='%x in F is
replaced by e/, As seen below, such a variant may induce
considerable changes in the spectral properties.

III. DETAILED ASPECTS OF THE BUTTERFLY
SPECTRUM

A. Multifractal properties

In the |m) representation, the matrix elements of the op-
erator F can be evaluated in a straightforward manner. Di-
agonalizing F numerically then yields its spectrum. Figure 1
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FIG. 1. The eigenphase spectrum (denoted €) of the Floquet
operator F in Eq. (3). /=20 in (a), 30 in (b), and 30.5 in (c).
alheg=1 in all panels. Beautiful butterfly patterns are clearly rec-
ognized. Analogous result for J=100 can be found in Ref. [22].

shows the typical eigenphase spectrum of F vs fi,= yfieq
=mn/J=8g,, for J=20, 30, 30.5, and a/%=alJ=1. Because
the spectrum of F is invariant if i, —# ,+4 (see the proof
in Appendix A), we set %, €[0,4m). Though in Fig. 1 the
involved Hilbert space is rather small, spectacular butterfly
patterns are already obtained. Their reflection symmetry with
respect to #i, =2 is also clearly seen, a fact proved in Ap-
pendix B. The found butterfly patterns in Fig. 1 resemble the
famous Hofstadter’s butterfly, but also present remarkable
differences in several aspects. First, if we take a vertical cut
of the butterfly patterns in Fig. 1, the spectrum is not found
to present any large gaps. Second, the butterfly patterns
shown in each panel of Fig. 1 possess a double-butterfly
structure, with each butterfly covering a 27 range of 7. This
double-butterfly structure is somewhat analogous to the spec-
trum of a Harper-like effective Hamiltonian considered in
Ref. [12]. More interestingly, though Figs. 1(b) and 1(c) has
more levels than Fig. 1(a), the overall outline of the double-
butterfly structure is seen to be insensitive to J for fixed
altieg=cald. Indeed, in Fig. 1(c) of Ref. [22] we also pre-
sented the spectrum for a much larger J value, i.e., /=100,
and again similar outline of the butterfly spectrum is ob-
tained. Qualitatively this is because when a/%.4=aJ is fixed,
the phase range of the second and fourth factors of F is also
fixed. By contrast, for a fixed value of J but for other not too
large values of «, the qualitative features of the butterfly
spectrum remain, but at different scales. For very large val-
ues of a (e.g., a/h>10), the butterfly pattern for a fixed
value of J will gradually dissolve, as seen in Fig. 2. This
dissolving process of a butterfly spectrum is similar to that
seen in the kicked-Harper model [5].

Some detailed features of the spectrum are also notewor-
thy. For example, it is observed that the spectrum collapses
to one point for %2, =2, if and only if J is an integer. This
can be explained as follows. If J is an integer and if 7,
=2, then in the |m) representation,
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FIG. 2. The dissolving of the butterfly pattern of the eigenphase
spectrum of the Floquet operator F in Eq. (3). In all the panels J
=30. From top to bottom: «/#i.=3, 6, and 10, respectively. This
process resembles that observed in the kicked-Harper model [5].
—imm _

.2 . 2 :
e—anZ/(ZJ) =i = e_”TJz. (7)

e
.2

So in this case e%:/?)) is equivalent to a rotation of

around the z axis, and hence the first three factors of F ex-

actly cancel its last factor. This cancellation will not occur if

J is a half-integer, i.e., if N is odd. Later we will return to this

intriguing difference between odd-N and even-N cases.

We have also examined the statistical behavior of the
found butterfly spectrum. To have good statistics we consider
a much larger J=2999. Figure 3(a) presents the cumulative
level density N(e) for a representative value of 7. It is seen
that N(e) is highly irregular, but does not show any clear flat
steps. This is consistent with our early observation that no
large gap exists in the spectrum. Figures 3(b)-3(d) show the
associated coarse-grained level distribution P(€) at three dif-
ferent scales. Evidently, P(e) has a fascinating self-similar
property. P(e) is evaluated by scanning the spectrum in a
series of bins of width A: P(e)=n;/[(2J+1)A] for €
e [iA,(i+1)A), where n; is the level number in this € range.
In generating Figs. 3(b)-3(d) we have set A=0.021.

The self-similarity shown in Figs. 3(b)-3(d) motivates us
to quantitatively characterize the spectrum via the general-
ized fractal dimension D, [28],

log>, p!

D, = —li , 8
17 g—1am0 log A ®

where p;=n;/(2J+1) is the probability associated with the ith
bin. For a given spectrum D, can be computed by the linear
regression of logXp? versus log A over an appropriate range
of A. The results of D, for the operator /' are shown in Fig.
3(e), where the A range of A €[0.006,0.6] is considered. We
adopt this A range with two considerations: on one hand it
should be large enough to capture the fluctuations at various
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1.0l (a) (b)

FIG. 3. Cumulative Floquet state density (a) and the coarse-
grained state density distribution (b)—(d) at different scales for the
operator F with #i,=(\5—1)7/2, a/fiey=1, and J=2999. Panel (e)
shows the generalized fractal dimension D, of the spectrum (see
text for the evaluation method). Solid dots and open squares are for
the spectra of F and the standard kicked-top model [25], respec-
tively. As a comparison the open triangles are for the D, evaluated
over a sequence of 2/+1 random numbers distributed uniformly in
(0,27), which agree very well with the results of the standard
kicked-top model. The dashed line (D,=1) is for reference.

scales and on the other hand the errors of D, estimated in the
linear regression processes should be as small as possible. In
all our calculations of Dy, the errors of D, thus obtained are
less than 2% [see error bars in Fig. 3(e)]. As expected from
the N(e) result in Fig. 3(a) we have Dy=1. However D, for
q # 0 clearly shows that the spectrum has multifractal prop-
erties. For the sake of comparison, Fig. 3(e) also shows the
D, results for the standard kicked-top model [25] (i.e., con-
sidering an operator comprising only the first two factors of
F) with the same values of parameters 7 and «. In clear
contrast it remains close to unity but slightly deviates with
increasing |g|. It should be noted that in generating Fig. 3 the
whole spectrum of the system F and that of the standard
kicked-top model has been taken into account; but further
numerical analysis have confirmed that in both cases when
the spectrum of the eigenstates of odd and even parities are
considered separately, the corresponding results of D, are
identical to those of the whole spectrum (see Fig. 3) within
the evaluated errors.

In order to understand the slight deviations of D, from
unity for ¢g#0 in the standard kicked-top model, we per-
formed the calculations of D, of a random sequence. It con-
sists of 5999 random numbers, of the same number of total
levels for J=2999 in both previous cases, and the random
numbers are generated from a uniform distribution over
(0,27). As can be seen in Fig. 3(e), the obtained D, agree
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FIG. 4. (a) Eigenphase spectrum of the Floquet operator F,,
[Eq. (6)] for J=30. (b) The corresponding fractal dimension D;]
computed for J=2999 and #,=(y5—1)7/2 (solid dots). The dashed
line (D,=1) is for reference. a/fi.z=1 in both panels.

with those of the standard kicked-top model perfectly. This
agreement suggests that with the given parameters a and 7,
the standard kicked-top model is classically near-integrable
and quantum mechanically its spectrum follows the Poisson
statistics. This is also confirmed by our numerical analysis
(not shown here). On the other hand, for a true uniform ran-
dom sequence one expects D,=1; hence the deviations of D,
from unity as observed in Fig. 3(e) can be safely linked with
a finite-size effect. Indeed, we have verified that as the length
of the random sequence is increased the deviations of D,
from unity approaches zero asymptotically.

Based on the results of D, for the system F (also consid-
ering the errors of D, together with the possible finite-size
effect for the system size J=2999, as suggested by the
above-mentioned random sequence analysis), we tend to
conjecture that the butterfly patterns found in the spectrum of
F may contain true fractals in the limit of J— +o. It will be
of importance to devote more efforts to this conjecture. How-
ever, our other analysis suggests that a direct numerical
check of our conjecture would require analogous calculations
for J~10°, which is far beyond our current computational
capacities.

We have also studied the F,, model defined above, obtain-
ing a similar multifractal butterfly spectrum, as shown in Fig.
4(a). Interestingly, despite that the outline of the butterfly
spectrum of F,, is much similar to that for F, careful inves-
tigations reveal considerable differences between the butter-
fly spectrum of F,, and that for F. For example, the fractal
dimension D, shown in Fig. 4(b) for F,, is similar to, but
slightly larger (smaller) than, that of F for ¢>0 (¢<<0). It is
found that this is because the gaps in the butterfly spectrum
of F,, are more densely filled than that of F' [compare Figs.
4(a) and 1(b)]. In the next subsection we will point out an
even more fundamental difference between these two sys-
tems.

B. Level crossings

In this subsection we study the level crossings in the but-
terfly spectrum as the parameter i, varies. Note first that due

026204-4



GENERATING A FRACTAL BUTTERFLY FLOQUET ...

FIG. 5. (Color online) (a) Level crossings between ten even-
parity states (solid) and nine odd-parity states (dotted) for J=10 and
a/hy=1.0. (b) A magnification of one part of (a). (c) The number
of level crossings versus J, for #, €[0,47) and a/fieg=1.0. The
cross (square) symbols are for crossings between different-parity
(same-parity) states and the fitting suggests a power law scaling
13.0( J2.7).

to the above-mentioned symmetry (m|F|n)=(-m|F|-n), the
eigenstates of F can be classified into J eigenstates of odd
parity and J+1 states of even parity. As such, we should
investigate the crossings between different-parity states and
between same-parity states. In either case, computationally it
is found that the minimal distance in 7, between two level
crossings decreases sharply with J. So even for a rather small
J~10 it is already numerically demanding to identify all the
level crossings.

As an example Figs. 5(a) and 5(b) present the typical
level crossing behavior for /=10. The Floquet states are seen
to cross each other frequently, between different-parity states
and between same-parity states. Both types of level crossings
turn out to be of vast interest. For the first type, at a crossing
point an arbitrary superposition of two crossing states of dif-
ferent parities remains an eigenstate but generally breaks the
parity symmetry. So if such a superposition state is used as
the initial state, the ensuing dynamics will maintain a non-
zero population difference between the two modes forever
[16,17]. This makes it clear that the first type of level cross-
ings give rise to the seminal CDT phenomenon [15,21] that
has attracted broad experimental and theoretical interests. It
should be pointed out that in some regimes of 7,, to the
naked eyes two curves of opposite parities in Figs. 5(a) and
5(b) are almost on top of each other. As a result many CDT
points are found in these regimes. Note also that the CDT-
induced population trapping is fundamentally different from
the well-known self-trapping effect on the mean-field level.
Indeed, the CDT effect here depends on 7 and J, whereas
mean-field self-trapping is transient and independent of J.

Now turning to the second type of level crossings, they
come as a surprise because avoided crossings between same-
parity states, rather than true level crossings, are generally
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-1

FIG. 6. Poincaré surfaces of section (with J,>0) of the classical
or mean-field limit of F in Eq. (3), with @=0.05 [same as in Fig.
1(a)], =5 in (a), 30 in (b), 75 in (c), and 100 in (d).

anticipated for classically nonintegrable systems (see Figs. 6
and 7). The second type of crossings therefore suggests the
uniqueness (e.g., some effective local “symmetry”) of F
whose matrix elements in the |m) representation are quasip-
eriodic. Recalling the above-mentioned extreme example
where all levels cross at 7, =2 for integer J, we expect that
special arithmetic properties of i, play a key role in both
types of level crossings.

Careful checks are made to ensure that the same-parity
level crossings observed here are not avoided crossings with
a very small gap. For example, we examined the crossing
behavior for small J, where analytical studies become pos-
sible. In particular, for /=2, using Wigner’s rotational matri-
ces to express the second and fourth factors of F, we can
analytically prove that there must be true level crossings be-
tween two odd-parity states, at #1,=27/3 and #,=10m/3,
regardless of the value of a. This is fully consistent with our
numerical finding. Details for this case are presented in Ap-
pendix C. This further confirms that the number theory prop-
erties of 7, are responsible for the same-parity level cross-
ings. As another check, we also studied the level crossing

a1

FIG. 7. Same as in Fig. 6 but @=0.1/3 in (a) and @=1/3 in (b)
with 7=0.067; a=0.1/3 in (c) and a=1/3 in (d) with 7=0.067
+1207r. Quantum mechanically, for J=30, cases (a) and (c), or
cases (b) and (d), share the same spectrum due to the spectral sym-
metry under fi,— 7 +4.
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behavior in the butterfly spectrum of F,,. Therein we only
obtain avoided crossings between all the eigenphases (see
also Fig. 9 in Appendix C). For J=12 and for the same
parameters as in Fig. 5(c), the typical gaps of the avoided
level crossings in the spectrum of F, are found to be >107°,
many orders of magnitude larger than the accuracy of our
eigenphase calculations (107'%). This “control case” hence
indirectly supports our observation of same-parity level
crossings for F.

By obtaining all the level crossings in the butterfly spec-
trum of F with high accuracy for J=12, we obtain in Fig.
5(c) that the number of CDT points contained in the butterfly
patterns scales as J> and the number of same-parity cross-
ings scales as J>7. In either case, the number of crossings
divided by the total number of levels (~J) or divided by the
total number of level pairs (~J?) diverges as J—+o%. In
particular, we assert that as N goes to infinity, on average
each pair of Floquet states in a butterfly pattern see infinite
CDT points.

C. Relevance of the classical limit

An interesting question is what implications the classical
dynamics may have on the fractal spectrum observed in the
F system. To this end we investigate the classical limit of F
defined above. Numerical studies indicate that classically the
system can be governed by both regular and chaotic motions,
depending on the two system parameters 7 and «. In general,
for a fixed a, as 7 increases the classical dynamics under-
goes a transition from being regular to being chaotic. As an
example Fig. 6 presents the phase space structure of the clas-
sical limit of F with @=0.05 and an increasing 7.

Such a classical regular-to-chaos transition lacks a quan-
tum counterpart in the butterfly spectrum shown in Figs. 1
and 2, whose characteristics can be much similar for radi-
cally different values of 7. Indeed, the quantum Floquet
spectrum is periodic in # with a period 4J (see Appendix
A). Therefore, upon quantization the regular or chaotic na-
ture of the classical dynamics may not necessarily be re-
flected in the spectrum and hence can be irrelevant to the
quantum dynamics.

Interestingly, the regular-to-chaos transition in the classi-
cal dynamics is not even connected to the dissolving of the
butterfly spectrum (see Fig. 2). As an example, let us exam-
ine such a dissolving process for J=30 from a/#.=1 [Fig.
1(b)] to a/f.4=3, 6, and 10 (Fig. 2), corresponding to «
=0.1/3, 0.1, 0.2, and 1/3, respectively. Consider the spec-
trum along the vertical cuts of these figures at 7i,/m=2
X 1073, i.e., 7=0.067r. It is found that in spite of the drastic
changes of the spectrum in this dissolving process, the dy-
namics in the classical limit remains regular all the way from
a=0.1/3 to 1/3 [see Figs. 7(a) and 7(b)]. On the other hand,
due to the 4 periodicity of the quantum spectrum in 7, we
expect the same dissolving process if we change 7 from
0.067 to 0.06 7+ 1207. However, the corresponding classical
dynamics is now completely chaotic [see Figs. 7(c) and
7(d)]. Hence the dissolving of the butterfly spectrum is un-
related to the classical dynamics. This is in contrast to the
kicked-Harper model, where the dissolving of Hofstadter’s
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butterfly was somewhat connected to the classical regular-to-
chaos transition [5].

The little relevance of the classical limit in understanding
the butterfly spectrum also makes our model markedly dif-
ferent from the conventional kicked-top model as a paradigm
for quantum chaos. We believe that such a lack of classical-
quantum correspondence is a result of a built-in feature of
our SU(2) model. That is, our strategy for generating the
fractal spectrum is based on a partial cancellation of quasir-
andom dynamical phases [see Eq. (5)], and this partial can-
cellation of quantum phases is a pure quantum feature with
no classical analog. To double check this we also studied the
classical dynamics of the F,, model and reached the same
conclusion. V

D. Generating a fractal-spectrum family

In the previous subsection we have studied the butterfly
spectrum associated with F. Here we point out that the but-
terfly spectrum of F is just one member of a whole butterfly-
spectrum family. Let us restrict ourselves to cases of integer
J and consider the following function:

g(1) = 2 [god(t — 2n7— 1) + §,8(t — 2n7)],

instead of that used in generating F as in Eq. (3). Here g,
=(5-~-go) and u and v are two integers sharing no com-
mon factors. We can then obtain an extended class of Floquet
operators

i27TJ§V/,lLF

)

We also note that F”/# can be obtained if we set 4g,7/&
=27v/ u in Eq. (4). Obviously, F corresponds to the special
case of v=pu=1.

In the double-kicked-rotor model considered in Ref. [7],
one can construct analogous operators by employing high-
order quantum resonances, where v/u indicates the reso-
nance order. For each choice of v/u a certain type of fractal
spectrum can be generated. An example for v/u=1/2, the
so-called antiresonance condition, can be found in Ref. [7]
(see Fig. 3 therein).

Interestingly, the spectrum of F”/#) defined in Eq. (9) also
forms a fractal-spectrum family, with the outline of each but-
terfly roughly similar to its relative in the double-kicked-
rotor model considered in Ref. [7]. We also find that for
integer J, the peculiar spectral characteristics of F discussed
above can be maintained in the spectrum of F#). For ex-
ample, we have investigated thoroughly the case of v/u
=1/2 and obtained that (1) D, curve is qualitatively the same
as that for F; ie., Dy=1 and [1-D,| increases as |g| in-
creases; (2) level crossings between eigenstates of the same
or different parities can occur; and (3) the dynamics in the
classical limit is also irrelevant in understanding the quantum
spectrum. Similarly, the spectral properties of F,, are also
found to be similar to its high-order extension Fg/ #

. 2 .2 . .2 .
F(V/,u) = 6127TJZ V/'u“el”Jz/(zj)e_m‘lxe_l”Jz/(zj)e_mjx —e

. 2
=¢?™:ViF . The possibility of constructing such a
butterfly-spectrum family provides further support that our
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strategy for generating a fractal Floquet spectrum in driven
quantum systems is quite general.

IV. DISCUSSION

Experimental confirmation of a butterfly Floquet spectrum
in driven systems is challenging. In the case of the kicked-
Harper model, there have been a few experimental proposals
but so far the kicked-Harper model has not been experimen-
tally realized. The double-kicked-rotor model proposed in
Ref. [6] opens up a new opportunity. However, in atom-
optics realizations of the kicked-rotor model, a dilute cold
gas in a kicking one-dimensional optical-lattice potential is
required, the quasimomentum spread of the initial state
should be sufficiently narrow, and the interaction between
the atoms should be negligible. By contrast, in the present
study, we rely on an interacting cold gas distributed on two
modes, and there is no quasimomentum issue. Moreover, be-
cause the effective Planck constant %, is simply given by
8g0, by tuning the atom-atom interaction constant alone we
may scan the butterfly spectrum already. These advantages
make the systems proposed in this study a promising alter-
native for possible experimental realizations of a butterfly
Floquet spectrum.

There are also other motivations for further theoretical
and experimental studies of our model. First, because the
found butterfly spectrum collapses at #i,=27 (or go=m/4)
for integer J, one may experimentally determine if N is even
or odd by scanning the dynamics in the neighborhood of
go=m/4. Note that detecting the even-odd properties of N is
impossible in the mean-field dynamics of a BEC, and such a
topic is already under investigation in Refs. [17,29] via other
mechanisms. Similarly, one may study the CDT points to
reveal non-mean-field effects. Second, it is now of great in-
terest, both experimentally and computationally, to revisit
early results of how a multifractal spectrum can be mani-
fested in time-dependent properties [30]. Third, noticing that
recently dissipative two-mode BECs have attracted consider-
able attention [31], it seems interesting to study dissipation
effects on a butterfly spectrum. Fourth, in the time-periodic
driven systems, (multi-)fractal may characterize the systems
in different aspects other than the spectrum. For example, it
has been revealed that in the kicked-rotor model with absorb-
ing boundary conditions the quantum survival probability
can be well related, both theoretically and numerically, to the
(multi-)fractal parametric fluctuations [32]. It would be inter-
esting to investigate if the similar (multi-)fractal transporting
fluctuations exist in our system and to what extent they can
be understood with the established theory.

Experiments of our model system with a small J can be
also interesting. For example, for the J=2 case we have
found that the F operator is an identity matrix in the odd-
parity subspace at fi,=2/3 and 107/3 (see Appendix C).
Such cases may be used to extract the value of g, to a good
precision. They may be also useful to explore the implication
of level crossings between same-parity states.

We next discuss how to experimentally confirm a butterfly
spectrum. Certainly, a Floquet spectrum cannot be directly
measured. However, in principle there is a standard proce-
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dure to invert the Floquet spectrum from the dynamics. This
involves quantum state reconstruction of the evolving two-
mode BEC. That is, after each period of the driving field,
enough measurements on different observables are to be
made to reconstruct the state of the evolving two-mode BEC.
This is possible because quantum state reconstruction of a
BEC is currently a very active and fruitful area. This state
reconstruction is not expected to be prohibitively demanding
if N is relatively small. With the quantum states at different
times reconstructed, then by making a fast-Fourier-
transformation (FFT) of the time-evolving state, the Floquet
spectrum may be obtained.

We point out that there is no need to follow the dynamics
for very long in order to resolve a butterfly spectrum. Let us
assume that the wave functions are already reconstructed by
sufficient measurements at integer multiples of the driving
period 7. To examine how many periods are needed for ob-
taining the butterfly spectrum from experiments, we consider
an example where the initial state is chosen as [m=10) for
J=20. Using the same parameters as in Fig. 1(a), and using
the time-evolving states after n=32, 64, 128, 256, 512, and
1024 kick pairs, the spectrum obtained via FFT are shown in
Fig. 8. It is seen that a few hundred kicks can be good
enough to resolve the shape of a butterfly spectrum relatively
well. If, as discussed in the following, the time scale of the
kicking period is chosen to be 1075 s, then this means that
the required duration to follow the dynamics in an experi-
ment is around 0.01 s.

Finally, let us comment on the parameter ranges we have
chosen. First of all, to ensure that a wide regime of the found
butterfly spectrum can be visited in a real system, a tunable
8o 1s required, and its characteristic value should be ~1. Let
g, be the self-interaction constant of a static two-mode BEC.
A reasonable range of g./f (f is the tunneling rate) is from
1073 to 1072 for a two-mode BEC in a double-well potential
[23]. With the first realization of F in mind and for aJ=1 and
J=10, we have g./f=27g./ a, and that 27g, ranges from 10~
to 1073. This indicates that g,/(7g.) should be around
103—10* If the value of g, (in SI unit of frequency) is about
50 s~!' (a value considered in [23]), we have that is in the
range of 107® s to 10> s. Considering other realizations of a
two-mode BEC might lead to different characteristic values
of 7and gy/(7g,).

V. CONCLUSION

We have presented a strategy for generating a fractal but-
terfly Floquet spectrum in a class of driven SU(2) systems.
The essence of this strategy is to partially cancel the quasir-
andom dynamical phases in the time evolution and then in-
duce intriguing spectral properties. The success of such a
strategy in both this work and our early work [6] treating a
double-kicked-rotor model indicates its wide applicability.
As such, butterfly Floquet spectrum is expected to occur in
many driven quantum systems that can go well beyond the
context of two-dimensional electron systems or the Harper-
model context. A butterfly spectrum thus obtained may also
differ significantly from Hofstadter’s butterfly.
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FIG. 8. Eigenphase spectrum of the Floquet operator F for J=20 and a/fh =1, retrieved via an FFT of the sequence
{((0)|F"|(0)),n=1,...,N} with the sequence length N=32 (a), 64 (b), 128 (c), 256(d), 512 (e), and 1024 (f). The initial condition is given

by |#(0))=|10) as an example.

Detailed aspects of the butterfly spectrum in driven SU(2)
systems are also examined. The level crossing features in the
butterfly spectrum, especially its connection with coherent
destruction of tunneling, and the surprising observation of
level crossings between same-parity states, are emphasized.
The sensitivity of the butterfly spectrum on the even-odd
properties of the number of particles is also highlighted.
Many further questions can be asked and we believe that our
driven SU(2) model will be relevant to a number of related
research topics, including fractal statistics, quantum chaos,
quantum control, and the validity of mean-field descriptions
of Bose-Einstein condensates.

The conventional system for understanding a butterfly
Floquet spectrum is the kicked-Harper model. Therein the
quantization rule varies with the boundary condition adopted
[33] and a compact toroidal phase space arises only if the
Planck constant assumes special values [9]. A general treat-
ment of the kicked-Harper model leads to a band structure
that often complicates the issue. By contrast, the phase space
structure in our driven SU(2) model is necessarily on a
sphere [25], with no arbitrariness in quantization and no
band structure in the spectrum. For these reasons we hope
that the butterfly Floquet spectrum discovered here can
stimulate future studies on general implications of a fractal
Floquet spectrum. Combining this work with our early study
[6], we have that three paradigms of quantum and classical
chaos, i.e., the kicked-rotor model, the kicked-Harper model,
and the kicked-top model, are linked all together because any
one of the three contexts can be used to generate quantum
critical systems with a fractal Floquet spectrum.

ACKNOWLEDGMENTS

We thank Professor C.-H. Lai for his kind support and for
making this collaborative work possible. J.G. was supported
by WBS (Grant No. R-144-050-193-101/133) and the NUS
“YTIA” (Grant No. R-144-000-195-101). J.W. acknowledges
support from National Natural Science Foundation of China
(Grant No.10975115) and DSTA of Singapore (Agreement
No. POD0613356).

APPENDIX A: 477 PERIODICITY OF F IN 7,

2
Letting U(fi,) = e™<'*”), the operator F can be written as
F(h,)=U(h,)e " *xU' (f,)e™"*x. It can be shown that

Ulh,+4m) = + Uh,), (A1)

hence F(f,+4m)=F(#,). To show the above equality let us
consider the representation using the eigenstates of J, i.e.,
Jlmy=mfilm), in which U is diagonalized and (m|U(%,
+47T)|m>=ei(’7+4jﬂ)mz/(2J), resulting in U(h,+4m)=U(h,) if J
is an integer, and U(f,+4m)=-U(#h,) if J is a half-integer.
In the latter case as UT(fL”+47T)=—UT(h,7), which contributes
a second minus sign, we again have F(f,+4m)=F(f,).

APPENDIX B: SPECTRUM SYMMETRY OF F
UNDER #,,—~f,,

Consider first the F operator and its eigenfunction |¢)
with

F(h,) ) =el). (B1)
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Multiplying et 26719 1o both sides of the above eigen-

. 2 .
function equation and defining that |¢)') = e 7'z 2e7 19|y,
then we have

F(-f,)¢)=ey). (B2)

Hence, comparing Eqgs. (B1) and (B2) one sees that the spec-
trum of F(#,) is identical with that of F(~%,).

Combining this result with the 47 periodicity of Fin i,
one obtains that the butterfly spectrum of F has a reflection
symmetry with respect to 7, =2

APPENDIX C: LEVEL CROSSINGS BETWEEN TWO
ODD-PARITY STATES OF F FOR J=2

The arithmetic properties of 7, can cause surprising and
frequent level crossings between same-parity eigenstates of
F. To understand this counterintuitive result we consider a
simple case with /=2. Numerically we observe level cross-
ings between two odd-parity states at fi,=2m/3 and 7,
=107/3 besides that at #1,=2 [see Fig. 9(a) for a/fg=1].
Here we give a mathematical proof that this is indeed the
case, thus supporting the numerically observed level cross-
ings in general. Note that our approach can be extended to
other cases as well.

We first note that each of the four factors of F preserves
the parity. So if we consider the odd-parity subspace only,
then each of the four factors can be reduced to a 2 X 2 matrix
because the odd-parity subspace is two dimensional for J
=2. Specifically, we consider the following basis states:

12) = (12) - |- 2912,

Ty = (1= - 2.

. 2 . 2
In this representation, the factor ¢’z and ="+ for f,,
=21/3 are given by

_ ei4ﬂ'/3 0
U= 0 ™

and U', respectively.
In order to get the matrix expression of F, we need to get
the analytical expression for the factor e~'“x. Fortunately,
this can also be done by using Wigner’s rotational matrices
[34]. Denoting Dfn,m as Wigner’s expression for the rota-
tional matrix, we have
2

m'm

=(m'|e”"*y|m). (Cn

What we need is the matrix {(m’|e~'%x|m), which is related to
2
D, by

m'm

(m'|e”"*x|m) = " ""D? (C2)

m'm*

Using the explicit expressions of the rotational matrix D’Zn,m
given in [34], we obtain

(2]e7"x]2) = cos*(ar2),

(2|e7"x|- 2) = sin*(@/2),

PHYSICAL REVIEW E 81, 026204 (2010)

e'r

FIG. 9. (Color online) The eigenphase spectrum of the Floquet
operator F (a) and F,, (b) for /=2 and a/fi.z=1. In (a) the two
eigenphases of odd parity (dotted) cross at fi,=2m/3, 2m, and
107r/3, while the three eigenphases of even parity (solid) only cross
at fi,=2m. As a contrast, the spectrum of F,, displays avoided

crossings instead.
(1le7™x[1) =[1 + cos(a)][2 cos(a) - 1]/2,
(1]e”*x|= 1) = =[1+2 cos(a)][1 - cos(@)]/2,
(2|e7"x{1) = — i sin(@)[ 1 + cos(a)]/2,
(2le”"*x|= 1) = —i sin(@)(cos(a) - 1)/2,
(1]e7"*¥2) = — i sin(a)[cos(a) + 1)/2,

(1]e7"x]= 2) = — i sin(a)[cos(a — 1)]/2.

In the odd-parity subspace, we then find

(2le7"%42) = cos(a),
Qe 1) = — i sin(a),
(1|e7"*2) = — i sin(a),

(1]e7*41) = cos(a).

Finally, the F matrix in the odd-parity subspace is given by

) . 10
F= Ue—zaJXUTe—taJX — ( ) .
01

Because F' turns out to be a unit matrix, this directly demon-
strates that the two eigenphases of F are both zero (because
e*=1). Two odd-parity eigenstates hence cross each other at
fi,=2m/3. The symmetry of the spectrum then indicates an-
other crossing at 7i,=107r/3. In addition, this proof shows
that this crossing is independent of «, which is also con-
firmed by our numerical calculations. Our proof can also be
extended to other cases with a rather small J, because thanks
to Wigner, the rotational matrix elements can be analytically
obtained.
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